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We provide an analytic theory to explain Anghelet al.’s recent numerical finding whereby a maximum in the
global performance emerges for a sparsely connected competitive populationfPhys. Rev. Lett.92, 058701
s2004dg. We show that the effect originates in the highly correlated dynamics of strategy choice, and can be
significantly enhanced using a simple modification to the model.
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There are two particularly active areas of research into
complex systems among physicists: multiagent populations
f1–3g and complex networksf4g. Arthur’s bar-attendance
problemf1g and its binary Ising-like simplificationsse.g., the
minority gamesMGd f2,3gd constitute everyday examples of
multiagent competition for limited resources. However, re-
searchers have only just started consideringcombiningnet-
works with such multiagent systemsf5,6g. Anghel et al. f5g
reported some fascinating numerical results in which the
fluctuation in the number of agents taking a particular action
can exhibit aminimum at small connectivityssee Fig. 1,
insetd. It is truly remarkable that there exists an optimal num-
ber of network connections such that the overall system per-
formance is maximized, and that this optimal connectivity is
actually quite small.

Anghel et al.’s results have so far lacked any theoretical
explanation, yet they represent an important challenge for
physics—not just because of the potential application areas
but also because they expose our limited understanding of
complex dynamical networks. Here we provide an analytic
theory that explains their remarkable finding. The essential
underlying physics comprisessid the highly correlated, non-
random temporal evolution of strategy scores,sii d the ten-
dency to link to future winnersslosersd at low shighd connec-
tivity p, andsiii d the emergence of differentspeciesof agents
characterized by the relative Hamming distanceD of their
strategies. The importance of the underlying dynamics means
that approaches based on assumptions of random histories,
e.g., spin-glass theories, are invalid. Our theory also shows
that network connections play a crucial role, even when only
a tiny fraction exist. This enables us to propose a minor
modification to Anghelet al.’s model which provides signifi-
cantly enhanced global performance. Interestingly, there is
recent empirical evidence to suggest that our proposed
“second-best” rule does actually arise in everyday lifef7g.
Our theory in the zero-connectivity limitsi.e., p=0d also pro-
vides a unique microscopic theory for the MG. Note that the
theory we present does not benefit from the simplifications
and hence, beauty, of conventional many-body theories in
physics. This is because—in contrast to conventional physi-
cal systems—the dynamics and configuration space are now
so closely intertwined. However, it ispreciselythis feature
which makes the problem so interesting for a theoretical
physicistf8g.

Anghel et al.’s model f5g featuresN agents who repeat-
edly choose between two actions “1” or “0”f2g. The winners

are those in the minority group. The global information is the
bit string containing them most recent winning outcomes
si.e., historyd. Each agent holdss=2 strategies. Each strategy
is one of the 22

m
possible mappings from the 2m histories to

action “1” or “0.” All strategies collect one virtual pointsVPd
if they predicted the winning outcome correctly, while each
agent collects onesreald point if he wins. The mean success
rate kwl is the average number of real points per agent per
turn. The agents are connected by an undirected random net-
work with p being the probability that a link between two
randomly chosen agents exists. Each agent compares the cu-
mulated performance of his best-performing strategysi.e.,
his predictord with that of his neighbors, and then follows the
prediction of whoever holds the best-performing predictor,
including himself. Thep=0 limit of the model reduces to the
MG. The identity of the best-performing strategy changes
over time, and forp.0 the predictor’s performance is gen-
erallydifferentfrom the agent’s performance. Figure 1sinsetd
illustrates the minimum in fluctuation arising at finitep f5g,
together withkwl as a function ofp for m=1. Since these
quantities are simply related, we focus here onkwl.

The features of interest occur at smallm and smallp,
hence we focus on the explicit example ofm=1 ssee Fig. 1d
and make the reasonable assumption that the predictors’ per-
formance can be approximated by thep=0 results. Generali-
zation tom=2, 3… ands.2 is straightforward but lengthy.
For p=0 and smallm, no single strategy outperforms the
otherssi.e., no runaway VPsd and the system restores itself in
a finite sm-dependentd number of time steps. The Eulerian
trail acts as a quasiattractor of the system’s dynamicsf9g,
yielding antipersistent behavior whenever the system revisits
a given history node on the de Bruijn graph of possible his-
tory bit strings. Lethteven

n jshtodd
n jd be a set consisting of the

turns in a history series at which a particular historyn oc-
curred an evensoddd number of times from the beginning of
the run until the moment of the current historym f6g. For t
P hteven

m j, the agents decide randomly since the strategy
scores are not biased. FortP htodd

m j, the success rate is deter-
mined by:sid The number of historiesk that had occurred an
odd number of times at the moment of decision. Since there
are 2m histories, we have 0økø2m. sii d The Hamming dis-
tanced between an agent’s best-performing strategy and the
best-performing strategy among all strategiessBPSd at that
particular turn.siii d The Hamming distanceD between the
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strategies that an agent holds. Fors=2, the probability that
the strategies are separated by a Hamming distanceD is
given by the binomial coefficient CD

2m
, where D

=0,1,… ,2m. For m=1, there are on averageN/4 agents be-
longing to theD=0 “species”si.e., two perfectly correlated
strategiesd, N/2 in theD=1 “species”si.e., two uncorrelated
strategiesd, andN/4 in theD=2 “species”si.e., two anticor-
related strategiesd. For m=1, k=0, 1, or 2, since there are
two possible history bit strings. Consider a particular timet
corresponding tok=0: tP hteven

n j for both histories assuming
the system follows the Eulerian trail. Hence the agents be-
comedynamically segregatedby their performance, accord-
ing to theirD value. As we now explain,N/4 sD=0d agents
should have a score oft /2 , N/2 sD=1d agents should have a
score of 3t /8, andN/4 sD=2d agents should have a score of
5t /16, in the long-time limit. Prior to a current history of,
say, 0, each history bits1 and 0d has occurred an even num-
ber of times. The strategies are all tied. The outcome is thus
randomsi.e., coin tossd. Agents with a givenD might have
won with probability wk=0

sevend&1/2 or lost with probability
f1−wk=0

sevendg, and hence there are two subgroupssi.e, won or
lostd of agents for a givenD, with different sizes. Regardless
of the outcome, the system now corresponds tok=1 and the
agents’ scores can be classified into six groups. We denote
the groups by the labelhD ,Yjk, wherek gives the number of
history bit strings occurring an odd number of timess0øk
ø2md and Y is the net number of times that the group has
won si.e., number of winning turns minus number of losing
turnsd starting from the most recent occurrence ofk=0. If the
outcome is 0, thentP htodd

m j. For theD=0 species, their strat-
egies do not allow them to change their action and hence the
agents who won in the last occurrencescarrying the label
h0,1j1d will definitely lose and those who lostscarrying the
label h0,0j1d will definitely win, a situation denoted by the
winning probabilitiesSh0 ,1j1

=0 andSh0 ,0j1
=1. For theD=1

speciessi.e., two uncorrelated strategiesd, those agents who
won in the last occurrence of the historyscarrying the label
h1,1j1d must hold a strategy that points to the most recent
winning option, and hence they will make the same choice—
they will definitely lose due to the crowd effect. For those
who lost, their winning probability depends on whether their
two strategies give the same or different predictions for the
history concerned. For those agents with strategies giving the

samesdifferentd predictionssd sfor history 0 in our exampled,
they will lose swind. Thus the group of agents labeled by
h1,0j1 will have an average winning probability ofSh1 ,0j1
=1/2. For theD=2 species, these agents’ anticorrelated
strategies give different predictions and hence they will defi-
nitely lose, i.e.,Sh2 ,1j1

=Sh2 ,0j1
=0.

If the outcome is 1 instead of 0, the situation corresponds
to k=1 since the history 0 has occurred an odd number of
times and tP hteven

m j since the current history 1 occurred an
even number of times. The strategies’ VPs do not indicate a
preference and hence do not lead to a crowd effect. In this
case, each of the six groups of agents has a probability of
wk=1

sevend of winning. As a result, the population will subse-
quently be grouped into nine groups according to the agents’
performance in the last two turns, i.e., win-win, win-lose or
lose-win, and lose-lose groups for each value ofD. Regard-
less of the outcome, the system is updated tok=2 and t
P htodd

m j. The instantaneous BPS is the strategy that predicted
correctly the most recenttP hteven

m j outcomes for bothm=0,
1. The BPS will predict incorrectly in the following turns,
due to the VPs’ antipersistence. The strategies with the sec-
ond highest VPs, i.e., one correct prediction out of two turns,
will predict correctly with probability 1/2. The momentarily
worse-performing strategy is the one that predicted incor-
rectly for both histories attP hteven

m j. However, it will predict
correctly in the comingtP htodd

m j time steps. Therefore,
agents holding the BPS will use it and are bound to lose.
Hence thehD ,2j2 groups have winning probabilitiesShD , 2j2
=0 for D=0, 1, 2, since they hold the BPS. For the other
D=0 agents, those who wonslostd in the last occurrence of
the current history will loseswind. Therefore, the winning
probabilities areSh0 ,1j2

=1/2 andSh0 ,0j2
=1. For the otherD

=1 agents, their winning probabilities areSh1 ,1j2
=1/4 and

Sh1 ,0j2
=1/2. ForD=2, theh2,0j2 agents must hold two an-

ticorrelated strategies of second highest VPs and thus
Sh2 ,0j2

=1/2. For theh2,1j2 group, an agent may either hold
sid the BPS and the worse-performing strategy, orsii d two
strategies with the second highest virtual points. For combi-
nation sid, this agent’s winning probability is 0 while for
combinationsii d, his winning probability is 1/2. Averaging
over these two possibilities givesSh2 ,1j2

=1/2. A common
feature of the winning probabilities is thathD ,kjk is always
zero, i.e.,agents with momentarily high-performance predic-
tors are bound to lose in the following time steps.

This dynamics is valid forpù0. An agent of Hamming
distanceD has an average winning probability attP htodd

m j for
a givenk,

wD,k
soddd =

1

ND
o
y=0

k

NhD,yjk
ShD,yjk

, s1d

whereND is the number of agents with Hamming distanceD
andShD ,yjk

is the winning probability of the group of agents
labeled byhD ,yjk, as discussed above. HereNhD ,yjk

is the
number of agents in the grouphD ,yjk which can be found
usingwk

sevend. For smallm, the probabilities of occurrence of
all histories are equal. Hence the probability of having a

FIG. 1. Mean success ratekwl and fluctuations sinsetd as a
function of connectivityp for m=1, with N=101 ands=2. Symbols
are numerical results. Lines are theoretical results. The inset shows
the minimum in the fluctuations f5g.
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particular value ofk is Pskd=Ck
2m

/22m
. For a given value of

k, the probability of havingtP htodd
m j and tP hteven

m j in a ran-
domly picked turn isk /2m and s1−k /2md, respectively.
Combining with Eq. s1d, the winning probability of the
agents with a given Hamming distanceD is f6g

wD = o
k=0

2m

PskdS k

2mwD,k
soddd + F1 −

k

2mGwk
sevendD , s2d

wherewk
sevend is the winning probability for time steps with

tP htevenj and can be found by random-walk arguments for
p=0 andpÞ0 f10g. For p=0, Eq.s2d gives the segregation
in success rates determined by the agents’ “species”-typeD.
The overall mean success rate is hence

kwl =
1

N
o
D=0

2m

wDND. s3d

For the range ofp where the important features arise, the
agents’ predictor performance is identical to thesreald scores
or success rates atp=0 discussed above. ForpÞ0, the
agents in each grouphD ,yjk can be separated into two sub-
groups,

NhD,yjk
= N̄hD,yjk

+ o
D8,j

DNhD,yjk,hD8, jjk
, s4d

where N̄hD ,yjk
is the number of agents in the grouphD ,yjk

who follow their own predictor, andDNhD ,yjk,hD8 , jjk
is the

number of agents who follow the predictor of a neighbor
belonging to grouphD8 , jjk, due to the presence of links.
Since agents only follow neighbors with better performing
predictors, only links to neighbors in the group with labels
D8,D or j .y sif D=D8d are effective. For givenp, the
probability of an agent inhD ,yjk having at least one link to
agents inhD8 , jjk is 1−qNhD8 , jjk, whereq;1−p. The number
of agents having a predictor performance better than the
group hD ,yjk is given by

AhD,yjk
= o

D8=0

D−1

o
j=0

k

Nhi, jjk
+ o

j.y

k

NhD, jjk
. s5d

The number of agentsN̄hD ,yjk
in Eq. s4d is then given by

N̄hD,yjk
= NhD,yjk

qAhD,yjk, s6d

sinceqAhD , jjk is the probability of the agents in grouphD ,yjk

not having any links to other groups with a better predictor
performance, and so still have winning probabilityShD ,yjk

for
tP htodd

m j. Agents will follow the prediction of agents in
hD8 , jjk only if sid they have connections to themand sii d
they do not have any connection to a better performing
group. Therefore,DNhD ,yjk,hD8 , jjk

in Eq. s4d is given by

DNhD,yjk,hD8, jjk
= NhD,yjk

s1 − qNhD8, jjkdqAhD8, jjk s7d

and these agents will have the same winning probability
ShD8 , jjk

as those in grouphD8 , jjk for tP htodd
m j. Hence the

mean success rateS̃hD ,yjk
for agents labeled byhD ,yjk fort

P htodd
m j is given by

S̃hD,yjk
=

1

NhD,yjk
FN̄hD,yjk

ShD,yjk
+ o

D8,j

DNhD,yjk,hD8, jjk
ShD8, jjkG .

s8d

For generalp, Eq. s1d is modified to

wD,k
soddd =

1

ND
o
y=0

k

NhD,yjk
S̃hD,yjk

. s9d

Equations2d can hence be used to evaluate the mean success
rate of agents for a givenD, while Eq. s3d gives kwl as a
function of the connectivityp. Equationss2d ands3d coupled
with Eqs.s4d–s9d are our main formal results.

Figure 1 showskwl as a function ofp. The theory can also
be used to evaluate the fluctuations ssee insetd. The theoret-
ical results are in excellent agreement with the numerical
simulations. Our theory is further validated in Fig. 2, where
we compare theoretical and numerical results for the success
rateswD for each species-typeD. EachD species has a dis-
tinct p dependence, showing why a peak appears in the
model of Anghelet al. For small connectivityp, D=1 and
D=2 agents can benefit by hooking up to the better perform-

FIG. 2. Numericalssymbolsd and theoreticalslinesd results for
the average success ratewD of theD=0, 1, 2 agents as a function of
p.

FIG. 3. The mean success ratekwl as a function of connectivity
p for our modified model and the model of Ref.f5g for m=1.
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ing D=0 agents. However, asp increases, these agents may
hook to agents belonging to groups with momentarily better
predictor performance. These links hurt the agent’s success
rate since momentarily better strategies are bound to lose in
subsequent turns. Hence the success rates ofD=1 and D
=2 agents will increase at smallp and decrease at higherp,
while those forD=0 agents decrease monotonically withp.

Finally, having understood the underlying physics, we can
propose a performance-enhancing modification to Anghelet
al.’s model. Instead of following the best-performing agent,

suppose an agent follows thesecond-best-performing agent
among his neighbors. Figure 3 shows thatkwl is substantially
larger over a wide range ofp. In addition, the value ofp at
the peak corresponds to a much larger number of network
links. Interestingly, there is recent empirical evidence to sug-
gest that such “second-best” rules do indeed make humans
happier on average in everyday lifef7g.
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