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We provide an analytic theory to explain Angletlal’s recent numerical finding whereby a maximum in the
global performance emerges for a sparsely connected competitive popuRkigs. Rev. Lett.92, 058701
(2004)]. We show that the effect originates in the highly correlated dynamics of strategy choice, and can be
significantly enhanced using a simple modification to the model.
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There are two particularly active areas of research intare those in the minority group. The global information is the
complex systems among physicists: multiagent populationbit string containing them most recent winning outcomes
[1-3] and complex network$4]. Arthur’s bar-attendance (i.e., history. Each agent holds=2 strategies. Each strategy
problem[1] and its binary Ising-like simplification&.g., the s one of the 2" possible mappings from the"histories to
minority game(MG) [2,3]) constitute everyday examples of action “1” or “0.” All strategies collect one virtual poiriy/P)
multlagent competltlon for limited resources. HOWGVET, re-if '[hey predicted the Winning outcome Con’ecﬂy, while each
searchers have only just started considegngbiningnet-  agent collects onérea) point if he wins. The mean success
works with such multiagent systerfis,6]. Anghelet al.[5]  rate(w) is the average number of real points per agent per
reported some fascinating numerical results in which thqum The agents are connected by an undirected random net-
fluctuatpnlln thg number of agents taklng a part|cul_ar actionyork with p being the probability that a link between two
can exhibit aminimumat small connectivitysee Fig. 1, randomly chosen agents exists. Each agent compares the cu-
insey. Itis truly remarkable that there exists an optimal num-myated” performance of his best-performing stratéug.,
ber of network connections such that the overall system peijs predictoy with that of his neighbors, and then follows the
formance is maximized, and that this optimal connectivity ISprediction of whoever holds the best-performing predictor,
actually quite small. __.including himself. Thep=0 limit of the model reduces to the

Anghel et al.s results have so far lacked any theoretlcaIMG_ The identity of the best-performing strategy changes

explanation, yet they represent an important challenge foBver time, and fop>0 the predictor’s performance is gen-

physics—not just because of the potential application area; . , . 8
but also because they expose our limited understanding (S%rl?snt)r/:tfsertigtfr:?irr?ir;hfma?r??Itusctiﬁzrtfigrnm:r?s?ii. Fé??{fg[sg]‘)
complex dynamical networks. Here we provide an analytid 9 '

theory that explains their remarkable finding. The essentiaﬁogeth?r th(w? as a function ofp for m=1. Since these
underlying physics comprise® the highly correlated, non- guantities are simply related, we focus here(of.

random temporal evolution of strategy scorés), the ten- The features of interest occur at smail and smallp,
dency to link to future winnerdosers at low (high) connec-  hence we focus on the explicit examplerof 1 (see Fig. 1
tivity p, and(iii ) the emergence of differespecieof agents and make the reasonable assumption that the predictors’ per-
characterized by the relative Hamming distaiizeof their ~ formance can be approximated by 0 results. Generali-
strategies. The importance of the underlying dynamics meansation tom=2, 3... ands> 2 is straightforward but lengthy.
that approaches based on assumptions of random historigor p=0 and smallm, no single strategy outperforms the
e.g., spin-glass theories, are invalid. Our theory also showsthers(i.e., no runaway VPsand the system restores itself in
that network connections play a crucial role, even when only finite (m-dependentnumber of time steps. The Eulerian

a tiny fraction exist. This enables us to propose a MiNokyaj| acts as a quasiattractor of the system’s dynarf@ds
modification to Angheet al's model which provides signifi-  yielding antipersistent behavior whenever the system revisits
cantly enhanced global performance. Interestingly, there i given history node on the de Bruijn graph of possible his-

recent empirical evidence to suggest that our proposeg . p; : v v i
" » A y bit strings. Let{ty,.+{ttaqd) be a set consisting of the
second-best” rule does actually arise in everyday [irg turns in a history series at which a particular histerpc-

Our theory in the zero-connectivity limit.e., p=0) also pro- ) A
vides a unique microscopic theory for the MG. Note that thecurred an everodd number of times from the beginning of

theory we present does not benefit from the simplification§he /Eun until the moment pf the current hl_stquy[6]. Fort
and hence, beauty, of conventional many-body theories irF teved: the agents decide randomly since the strategy
physics. This is because—in contrast to conventional physiScores are not biased. Foe {t;;4, the success rate is deter-
cal systems—the dynamics and configuration space are no®ined by:(i) The number of histories that had occurred an
so closely intertwined. However, it igreciselythis feature odd number of times at the moment of decision. Since there
which makes the problem so interesting for a theoreticahre 2" histories, we have € k<2 (ii) The Hamming dis-
physicist[8]. tanced between an agent’s best-performing strategy and the
Anghel et al's model[5] featuresN agents who repeat- best-performing strategy among all strategiB®9 at that
edly choose between two actions “1” or “[2]. The winners  particular turn.(iii) The Hamming distanc® between the
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same(differend predictior(s) (for history 0 in our example
they will lose (win). Thus the group of agents labeled by
{1,0}; will have an average winning probability &0,
=1/2. For theD=2 species, these agents’ anticorrelated
strategies give different predictions and hence they will defi-
nitely lose, i-e-,S{z,l}fS{z,O}l:O-

If the outcome is 1 instead of 0, the situation corresponds
to k=1 since the history 0 has occurred an odd number of
00 02 04 06 08 1.0 timesand te {t4,4 since the current history 1 occurred an
even number of times. The strategies’ VPs do not indicate a
preference and hence do not lead to a crowd effect. In this

FIG. 1. Mean success ratev) and fluctuationo (insed as a : o
. - . case, each of the six groups of agents has a probability of
function of connectivityp for m=1, withN=101 ands=2. Symbols (even L. 9 P 9 . p. y
of winning. As a result, the population will subse-

are numerical results. Lines are theoretical results. The inset shows«=1 . . . ,
the minimum in the fluctuatior [5] quently be grouped into nine groups according to the agents

performance in the last two turns, i.e., win-win, win-lose or
strategies that an agent holds. B2, the probability that lose-win, and lose-lose groups for each valuéoiRegard-
the strategies are separated by a Hamming distéhde less of the outcome, the system is updatedkto?2 andt
given by the binomial coefficient c2"  where D e {tb,4- The instantaneous BPS is the strategy that predicted
=0,1,...,2™ Form=1, there are on averad®/4 agents be- correctly the most recerte {t4, . outcomes for both.=0,
longing to theD=0 “species”(i.e., two perfectly correlated 1. The BPS will predict incorrectly in the following turns,
strategies N/2 in theD=1 “species’(i.e., two uncorrelated due to the VPs’ antipersistence. The strategies with the sec-
strategies andN/4 in theD=2 “species”(i.e., two anticor-  ond highest VPs, i.e., one correct prediction out of two turns,
related strategigsFor m=1, k=0, 1, or 2, since there are will predict correctly with probability 1/2. The momentarily
two possible history bit strings. Consider a particular time worse-performing strategy is the one that predicted incor-
corresponding tac=0:t e {tg,J for both histories assuming rectly for both histories ate {t . However, it will predict
the system follows the Eulerian trail. Hence the agents beeorrectly in the comingt e {t4;} time steps. Therefore,
comedynamically segregatehly their performance, accord- agents holding the BPS will use it and are bound to lose.
ing to theirD value. As we now explair\/4 (D=0) agents Hence the{D, 2}, groups have winning probabilitieSp 5,
should have a score 6f2, N/2 (D=1) agents should have a =q for D=0, 1, 2, since they hold the BPS. For the other
score of 3/8, andN/4 (D=2) agents should have a score of D=0 agents, those who wdiost) in the last occurrence of
5t/16, in the long-time limit. Prior to a current history of, the current history will losgwin). Therefore, the winning
say, 0, each history bitl and 0 has occurred an even num- probabilities areSp,11,=1/2 andS g,=1. For the otheD
ber of times. The strategies are all tied. The outcome is thus 1 agents, their winning probabilities a$1'1}2:1/4 and

random(i.e., coin.t_os}s @gsnts with a giverp might ha_1ye 1.0,=1/2. ForD=2, the{2,0}, agents must hold two an-
won with probability w,”,"<1/2 or lost with probability o rrejated strategies of second highest VPs and thus

k=0
(even ; .
[1-w,25"], and hence there are two subgroupe, won or Si2.0,=1/2. For the{2, 1}, group, an agent may either hold
lost) of agents for a giveD, with different sizes. Regardless (i) the BPS and the worse-performing strategy,(ior two
of the outcome, the system now corresponds#d and the  gyrateqies with the second highest virtual points. For combi-

agents’ scores can be classified into :_;ix groups. We denoigytion (i), this agent’s winning probability is 0 while for
the groups by the labéD, Y}, wherex gives the number of . mpination(ii), his winning probability is 1/2. Averaging

history bit strings occurring an odd number of tim@s<x  gyer these two possibilities giVGﬁz,l}fl/Z- A common

=2 andY is the net number of times that the group hasStea¢re of the winning probabilities is thé, ), is always

won (i.e., number of winning turns minus number of 10sing ;¢4 j e agents with momentarily high-performance predic-
turns starting from the most recent occurrenceefO. Ifthe 1.« 4re bound to lose in the following time steps

outcome is 0, thehe {t4, . For theD=0 species, their strat- This dynamics is valid fop=0. An agent of Hamming

egies do not allow_them to change their acti(_)n and hence thgistanceD has an average winning probabilitytat {t“,} for
agents who won in the last occurren@arrying the label givenx

{0,1},) will definitely lose and those who lostarrying the
label {0, 0};) will definitely win, a situation denoted by the 1 X
winning probabilitiesSy 3y, =0 andSy g, =1. For theD=1 W(D‘{"’(d) = N—E Nio.y Soyt» (1)
species(i.e., two uncorrelated strategjeshose agents who Dy=0

won in the last occurrence of the histafgarrying the label ) i ) ,
{1,1},) must hold a strategy that points to the most recent’h€r€Np is the number of agents with Hamming distaiize
winning option, and hence they will make the same choice—and Sp .y, IS the W'””'”Q probability of the group O_f agents
they will definitely lose due to the crowd effect. For those abeled by{D,y},, as discussed above. Hekgy y; is the
who lost, their winning probability depends on whether theirnumber of agents in the groy®,y}, which can be found
two strategies give the same or different predictions for theusingwff"e”. For smallm, the probabilities of occurrence of
history concerned. For those agents with strategies giving thall histories are equal. Hence the probability of having a
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0.4} \&%M:omems Nio.yi, = Nioy, + 2 ANy, (0.1, 4)
D'.j
z 02 TR et whereNyp, , is the number of agents in the grogip, v},
0.0} (a) who follow their own predictor, and\Nyp \, o' j; is the
' ' ' ' ' ' number of agents who follow the predictor of a neighbor
0.4} D = 1 Agents belonging to group{D’,j},, due to the presence of links.
. % Since agents only follow neighbors with better performing
3 02 o predictors, only links to neighbors in the group with labels
ool ® D’'<D or j>y (if D=D’) are effective. For givemp, the
‘ probability of an agent ifD,y}, having at least one link to
0.4} agents in{D’,j} is 1-gNio".i\, whereq=1-p. The number
of agents having a predictor performance better than the
gﬁ 0.2 group{D,y}, is given by
D-1 « K
0.0t (€)
00 02 04 06 08 10 Apy,= 2 2 Nij + 2 Npj, (5)
P D’=0 j=0 i>y

FIG. 2. Numerical(symbolg and theoreticallines) results for  The number of agenﬂS_I{D , in Eq. (4) is then given by
the average success ratg of theD=0, 1, 2 agents as a function of Vi

p. N{D,V}K = N{D’y}KqA{DYY}K, (6)

sinceq™o.i. is the probability of the agents in grodp,y},

not having any links to other groups with a better predictor
performance, and so still have winning probabiﬁiyg,y}K for

te {th,). Agents will follow the prediction of agents in
{D’,j}, only if (i) they have connections to theamd (ii)
they do not have any connection to a better performing

particular value of« is P(K):Cﬁm/ 22" For a given value of
k, the probability of having e {tf,j andt e {t& 4 in a ran-
domly picked turn isx/2™ and (1-«/2™), respectively.
Combining with Eg. (1), the winning probability of the

agents with a given Hamming distanBeis [6]

om . . group. ThereforeANp y, o 3 in EQ. (4) is given by
- p SAS(C N O A (ever)) 2 L .
Wp ZO (K)( ZmWD'K om W, ) (2 AN{D,y}K,{D’,j}K — N{D,y}K(l _ qN{D ’J}K)qA{D e 7)

Wherewff"e” is the winning probability for time steps with @nd these agents will have the same winning probability
t € {tesed and can be found by random-walk arguments forSp’ jj, @s those in grougD’,j}, for te {ts,y. Hence the

p=0 andp+0 [10]. For p=0, Eq.(2) gives the segregation mean success rafp, ,, for agents labeled byD,y}, fort
in success rates determined by the agents’ “species™ype ¢ {t“\4 is given by -
The overall mean success rate is hence

~ 1 [—
i S, = | NiowSow, + 2 ANy, 013, So.i, |-
== 1D, D'
(w) = N WpNp. 3)
D=0 (8

For the range op where the important features arise, the For generabp, Eq. (1) is modified to
agents’ predictor performance is identical to thea) scores

or success rates gi=0 discussed above. F@+#0, the W(Odd)_ié NP ©)
agents in each grou{D,y}, can be separated into two sub- D — Np im0 .y, S0y,
groups,

Equation(2) can hence be used to evaluate the mean success
rate of agents for a give®, while Eq. (3) gives(w) as a
function of the connectivityp. Equationg2) and(3) coupled
with Egs.(4)—(9) are our main formal results.

Figure 1 showsw) as a function op. The theory can also
be used to evaluate the fluctuatior(see inset The theoret-
ical results are in excellent agreement with the numerical

o follow best simulations. Our theory is further validated in Fig. 2, where
0.0f = follow 2nd best 1 . .
00 05 0 we compare theoretical and numerical results for the success
: p : rateswp, for each species-typp. EachD species has a dis-

tinct p dependence, showing why a peak appears in the
FIG. 3. The mean success rgt@ as a function of connectivity model of Anghelet al. For small connectivityp, D=1 and
p for our modified model and the model of RgE] for m=1. D=2 agents can benefit by hooking up to the better perform-
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ing D=0 agents. However, gsincreases, these agents may suppose an agent follows ttsecond-besperforming agent
hook to agents belonging to groups with momentarily bettemmong his neighbors. Figure 3 shows tha} is substantially
predictor performance. These links hurt the agent's succesggrger over a wide range qf. In addition, the value op at
rate Since momentarily better Stl’ategies are bound to |Ose i'!he peak Corresponds to a much |arger number of network
subsequent turns. Hence the success rateB=f andD jinks, Interestingly, there is recent empirical evidence to sug-
=2 agents will increase at smailand decrease at highpr  gest that such “second-best” rules do indeed make humans
while those forD=0 agents decrease monotonically With  pappier on average in everyday Iif@].

Finally, having understood the underlying physics, we can
propose a performance-enhancing modification to Anghel P.M.H. thanks the Research Grants Council of the Hong
al.’s model. Instead of following the best-performing agent,Kong SAR GovernmentGrant No. CUHK4241/01p
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